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Abstract

With the ongoing global climate crisis, exploring and understand-
ing weather data is germane. To highlight the importance of the topic
of explainable artificial intelligence (xAI), this research focuses on us-
ing SHAP approach to evaluate machine learning predictions on chosen
weather data. The first chapters of this thesis summarize the existing
literature on the topic of machine learning used for weather predictions
as well as weather explanations in general. Later, we describe the ma-
chine learning approaches and the datasets used during this research
project. In this thesis, we examine weather data collected in three
different locations in Switzerland. After a brief introduction of the
data and its variables, we use four machine learning models - Linear
Regression, Decision Tree, Random Forest, and LightGBM - to make
predictions. The performance of these algorithms is then compared us-
ing respective performance metrics. On top of this, SHAP comes into
play to help understand the models. By using SHAP, one can easily
comprehend what features and how these are significant when making
predictions. Not only is this beneficial when interpreting the results,
but it can also come in useful when improving the model performance.
Afterward, corresponding limitations and future work is discussed in
appropriate detail. At the end of the thesis, we answer the main re-
search question, "How effective is SHAP for providing explanations for

existing weather prediction models?".
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1 Introduction and Thesis Structure

This thesis focuses on analyzing and explaining machine learn-
ing models forecasting the weather with the help of SHAP (SHAP-
ley Additive exPlanations),1 a game-theoretic approach. The
main motivation of this research lies in the explainability of ma-
chine learning models [1].

This thesis, however, also focuses on highlighting environmen-
tal changes using real-world data. By applying basic machine
learning techniques together with the SHAP method, it aims to
explain the possible meteorological and air quality predictions.
Thus, this research tries to underline the severity of such environ-
mental issues justified by widely used data science methods.

When talking about the relevance of this research, both so-
cietal and economic perspectives need to be mentioned. These
predictions, since impacting human lives, need to be accurate.
This is essential not only from the societal but also from the eco-
nomic perspective. As stated by The Organization for Economic
Cooperation and Development [2] during their Global Forum on
Environment in 2016, “the links between the economy and the en-
vironment are manifold”. For instance, economic growth causes
pollution, especially in poor parts of the world, which then low-
ers the quality and quantity of resources, thus harming economic
growth again.

Moreover, the fact that weather is closely connected to climate
change is undoubtful. The United States Environmental Protec-
tion Agency (EPA) classifies the changes in temperature as one of
the indicators of the extreme weather conditions that we are facing
more and more often [3]. Therefore, in this thesis, we would like
to point out these issues by using relevant data together with dif-
ferent machine learning methods and explaining the results with
the help of SHAP visualizations.

1
https://shap.readthedocs.io/en/latest/index.html
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1.1 Research Questions

For this research project, we developed four research questions
– one main research question and three subquestions.

Main research question:

How effective is SHAP for providing explanations for

existing weather prediction models?

Subquestions:

1. Subquestion: How effective are existing machine learning
approaches in forecasting weather?

2. Subquestion: What datasets and how do they need to be
adjusted in order to use them for machine learning?

3. Subquestion: How effective is SHAP when compared to
other approaches to xAI?

10



1.2 Thesis Structure

The rest of the thesis is organized in the following way:

In Chapter 2, three types of proposed research methods are
defined and described with regard to this thesis.

The main purpose of Chapter 3 is to give an overview of
existing literature on both machine learning used for weather pre-
dictions and weather explanations in general.

Chapter 4 introduces the datasets and machine learning mod-
els used in the thesis. Data used for the predictions is described
in sufficient detail with the help of various figures. A brief expla-
nation of the chosen machine learning algorithms is given.

The focus of Chapter 5 lies in the evaluation of the machine
learning models. In this section of our thesis, we make use of
respective performance metrics to compare the models and discuss
the model performance.

Chapter 6 details the usage of SHAP for this research. First,
an introduction to explainability in machine learning in general is
provided, which is then followed by concrete examples of SHAP
used for weather predictions. Also, the SHAP visualizations are
available in this section together with a discussion on the respec-
tive application of SHAP and a short reflection on the usage of
SHAP in this thesis. Last but not least, with the help of SHAP
visualizations, we perform a simple feature selection of our best-
performing model.

Chapter 7 covers the research limitations. In this part of the
thesis, three different weaknesses of our models are explained.

The last chapter, Chapter 8, is divided into two sections.
In the first part of this chapter, the main findings of the thesis
are summarized, and the research questions are revisited and an-
swered. In the second section, we state the key ideas for possible
future work.

11



2 Research Methodology

To describe the methodology of our research, we focus on three
different categories – sources of information, type of data used, and
purpose. What types of research and why these are appropriate
for our research is outlined below.

2.1 Sources of Information: Secondary Research

When it comes to information sources, opting for secondary in-
stead of primary data is both convenient and suitable. As opposed
to primary data analysis, in secondary data analysis, individuals
who analyze the data did not collect it [4]. Hence, data of ade-
quate size and quality is needed for our research.

According to [5], the process of secondary analysis consists of
three main steps – developing the research question, identifying
the dataset, and evaluating it. All of these are described below in
the context of our research.

2.1.1 Develop the Research Questions

As the literature suggests, “the key to secondary data analysis
is to apply theoretical knowledge and conceptual skills to utilize
existing data to address the research questions” [5]. Hence, as the
very first step of our research, we developed one main research
question and three subquestions stated in Chapter 1.

2.1.2 Identify the Dataset

The next step of our secondary research was the identification
of data we will work with. We chose two datasets – Daily up-

dated air quality measurements, since 1983
2 and Daily

2
https://data.europa.eu/data/datasets/6db44316-9717-4a98-8a83-577d4cb25

afc-stadt-zurich?locale=en
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updated Meteodata, since 1992.3 We agreed that we are
able to use these datasets for the purpose of this thesis since their
size as well as contents are suitable for the purpose of this thesis,
which is discussed in more detail in Chapter 4. All in all, after
creating research questions and doing the first literature review,
we came to the conclusion that the dataset found is suitable for
our research.

2.1.3 Evaluate the Dataset

It is our responsibility to work with data that comes from
a reliable source. Thus, we made sure that this is the case by
choosing datasets from the data.europa.eu website published by
opendata.swiss. Since data.europa.eu is the official portal for Eu-
ropean data and is funded by the European Union and managed
by the Publications Office of the European Union,4 we believe
such source may be considered as a reliable one.

2.2 Type of Data Used: Quantitative Research

By definition, “quantitative research encompasses a range of
methods concerned with the systematic investigation of social phe-
nomena, using statistical or numerical data” [6]. The involvement
of measurement, which is essential for quantitative research, is
imperative in our research too. The process of deduction is con-
tinued by analyzing these measurements and finalized by drawing
respective conclusions [6].

There exist two categories of quantitative research, namely ex-
perimental and survey designs [6]. In this thesis, experimental
design is envisaged. According to Watson [6], “an experiment is
a study where the researcher can manipulate one variable, the in-

3
https://data.europa.eu/data/datasets/0ece9cfa-49ad-4aef-b923-3a0ec2520

736-stadt-zurich?locale=en

4
https://data.europa.eu/en
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dependent variable, and study its effect on a dependent variable”.
This is exactly what we are doing with our dataset since we make
predictions of our dependent variable (temperature) while mak-
ing use of our independent variables. We not only study the overall
performance of our machine learning models, but we also examine
which specific features and how much they effect our dependent
variable by using SHAP.

2.3 Purpose: Applied Research

The main purpose of this thesis is to apply practical knowledge.
Compared with basic research, applied research focuses more on
understanding and addressing problems rather than developing
universal knowledge. Furthermore, as is typical for applied re-
search, in our thesis, we aim to answer multiple questions and
make use of multiple methods [7]. In particular, we pre-process
the datasets found online, build four machine learning models us-
ing this data, apply SHAP approach to explain the results of these
algorithms, and in the end, we answer four research questions in
our thesis. On top of this, we discuss related literature together
with our conclusions and observations from doing this research.
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3 State of the Art

The first part of this section focuses on machine learning for
weather predictions. This is continued with an introduction to
weather explanations where a few interesting papers are men-
tioned. Furthermore, a brief explanation of SHAP as well as of
our choice to work with this approach in particular is explained.

3.1 Machine Learning for Weather Predictions

When analyzing data on weather, making use of machine learn-
ing algorithms is undoubtedly the right approach. This claim is
supported by the amount of literature available online. For exam-
ple, an article written by Bochenek and Ustrnul [8], demonstrates
extensive research of “the 500 most relevant scientific articles pub-
lished since 2018, concerning machine learning methods in the
field of climate and numerical weather prediction”. In this paper,
multiple machine learning models are built, of which the Random
Forest method is used in our research too. The reason for choos-
ing Random Forest and the three other machine learning models
are further explained in Chapter 4.

Another paper where the goal is to anticipate weather predic-
tions uses four different algorithms – Gradient Boosting Decision
Tree, Random Forest, Naive Bayes Bernoulli, and KNN Algorithm
[9]. For their predictions they make use of various features such
as rainfall, wind direction, and cloud. The best-performing
model, however, is the ensemble-based model5 with an overall ac-
curacy of 0.957. In our thesis, we also make use of the Decision
Tree and Random Forest algorithms, and their performance is
shown in Chapter 5.

Since the choice of machine learning models is a crucial one, we
apply the knowledge from a ’Machine learning algorithms: Popu-

5
https://towardsdatascience.com/ensemble-methods-in-machine-learning-wh

at-are-they-and-why-use-them-68ec3f9fef5f
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lar algorithms for Data Science and Machine Learning’ book [10]
to make suitable decisions. This book not only explains the the-
ory behind the machine learning models, but also shows how to
use these techniques in practice with the help of Python.

3.2 Weather Explanations

To get an insight into the weather explanations, we explore a
paper written by Dieber and Kirrane [11], ’A Novel Model Us-
ability Evaluation Framework (MUsE) for Explainable Artificial
Intelligence’. During their research, they worked with different
machine learning models and used model agnostic explanations
to better understand their results. Compared with our approach,
however, they used the LIME model,6 which differs from SHAP in
various aspects. In contrast to SHAP, LIME does not use Shapley
values to compute the feature importance but it trains an inter-
pretable model by creating a new dataset consisting of some of
the original variables.7. Also, LIME works by explaining single
predictions of a model, while SHAP is both locally and globally
interpretable.8 Nevertheless, the data used in their research is
on the weather too, and the models they chose to implement are
similar to our preferences.

To analyze our machine learning models, we decided to use the
SHAP explanations that are “a popular feature-attribution mech-
anism for explainable AI” [12]. The reason for our choice, how-
ever, stems from SHAP’s universal usability. As indicated in the
’Explainable AI: A Review of Machine Learning Interpretability
Methods’, “SHAP is the most complete method, providing expla-
nations for any model and any type of data, doing so at both a

6
https://www.oreilly.com/content/introduction-to-local-interpretable-mo

del-agnostic-explanations-lime/

7
https://christophm.github.io/interpretable-ml-book/lime.html

8
https://ernesto.net/lime-vs-shap-which-is-better-for-explaining-machin

e-learning-models/
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global and local scope” [1]. Here, SHAP was compared to multi-
ple approaches to xAI of which some are LIME, InterpretML,9,
or AIX360.10 Additionally, SHAP together with LIME are con-
sidered the most comprehensive and dominant approaches to ex-
plaining feature importance [1].

Apart from gathering examples on how to use SHAP to in-
terpret various machine learning models, the official SHAP docu-
mentation11 explains the SHAP approach using this simple figure
(Figure 1). SHAP helps to understand the “black box” by visu-
alizing the output of machine learning models. In other words,
it explains the results of machine learning models by visualizing
the effect the independent variables (features) have on respective
predictions of a dependent variable. For this, SHAP uses “Shapley
values from game theory and their related extensions”.12

Figure 1: SHAP model example13

9
https://interpret.ml/

10
https://aix360.readthedocs.io/en/latest/

11
https://shap.readthedocs.io/en/latest/index.html

12
https://shap.readthedocs.io/en/latest/index.html
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A paper published by Lubo et al. [13] shows how the SHAP
approach works in practice. There, SHAP values are used to in-
terpret data on seismic facies. More precisely, they implement
SHAP’s TreeExplainer and analyze both global and local inter-
pretations of their predictions. In contrast to our research, in [13]
only one machine learning model, Random Forest, is built, and
the data used in this paper is a 3D seismic survey14 which is very
different from our data.

SHAP is also used to show the relationship between climatology
and other fields. In [14], SHAP explains the heatstroke predictions
while looking at multiple weather information. With the help of
SHAP, Ogata et al.[14] are able to identify which predictors work
for predicting a higher as well as lower number of heatstrokes of
deaths and hospital admissions. Other examples where SHAP is
used interdisciplinary while still focusing on weather are outlined
in Chapter 6.

14
https://www.youtube.com/watch?v=hxJa7EvYoFI&ab_channel=ge0physicsrocks

18



4 Data and Machine Learning

In Chapter 4, we provide a short yet informative data intro-
duction and describe the process of its pre-processing. Moreover,
we make use of multiple tables and figures to communicate our
findings more effectively. In the second part of this chapter, the
machine learning models used in our thesis are mentioned with
the support of relevant literature. Ultimately, we explain how we
implement machine learning using Python.

4.1 Data

The datasets used in this thesis are published by opendata.swiss
on the data.europa.eu website. Two types of datasets are used,
namely Daily updated air quality measurements, since

1983
15 and Daily updated Meteodata, since 1992.16 These

two datasets are, as their names suggest, updated daily, and they
contain measurements from three locations in Switzerland. For
this reason, the datasets are in the German language.

All in all, these dataset contain one datetime variable each
(Date), one integer variable (Value) each, and five string vari-
ables (Location, Parameter, Interval, Unit, and Status) each.
There are five different parameters available in the meteo dataset
(global_radiation, temperature, air_pressure, T_max_h1,
and precipitation_duration) and eleven parameters available
in the air quality dataset (O3, O3_max_h1, O3_nb_h1>120, CO,
NO2, NO, NOx, SO2, PM10, PM2.5, and PN). Respective units for
these parameters are outlined in Table 2. The Status variable in-
dicates whether the specific measurement is revised or provisional.
Finally, there is the Interval variable that has only one unique

15
https://data.europa.eu/data/datasets/6db44316-9717-4a98-8a83-577d4cb25

afc-stadt-zurich?locale=en

16
https://data.europa.eu/data/datasets/0ece9cfa-49ad-4aef-b923-3a0ec2520

736-stadt-zurich?locale=en
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value since the datasets are updated every day.

4.1.1 Data Pre-processing

Before training the data for the purpose of machine learning
described in the second part of this chapter, we had to pre-process
the data. This consisted of several steps that are explained below.

The very first step was to put all the meteo and air quality .csv
files together. To be able to create one dataset out of these two
.csv files, we merged them based on Date, Location, Interval,
and Status columns. In the merged dataset, there were found no
duplicates, but we found a few missing values. However, at this
stage, we did not want to drop these since we were planning to
make considerable changes to the dataset, and we did not want to
lose any data.

Next, the variable names, as well as some of the values, were
translated from German to English for the sake of consistency of
this research. Afterward, we changed the variable types where
needed, for instance, for the Date variable. Table 1 and Table 2
show the variable overview we got after these amendments. Ta-
ble 1 shows the datetime and integer variables and the number of
unique occurrences, their mean, minimum, and maximum values.
Table 2, on the other hand, displays the string variables, the num-
ber of unique occurrences, and the list of unique values for each
of them.

Table 1: Overview of date, value_meteo, and value_air_quality variables

Variable Name #Unique Mean Min Max
Date 10,847 2011-03-13 1992-07-01 2022-03-15
Value_Meteo 20,266 256.32 -10.93 1440
Value_Air_Quality 19,072 525.82 -0.02 78,863.57
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Table 2: Overview of meteo and air quality string variables

Variable Name #Unique Unique Values
Location 3 Zch_Stampfenbachstrasse

Zch_Schimmelstrasse

Zch_Rosengartenstrasse

Parameter_Meteo 5 global_radiation

temperature

air_pressure

T_max_h1

precipitation_duration

Interval 1 d1

Unit_Meteo 4 W/m2

°C

hPa

min

Status 2 revised

provisional

Parameter_Air_Quality 11 O3

O3_max_h1

O3_nb_h1>120

CO

NO2

NO

NOx

SO2

PM10

PM2.5

PN

Unit_Air_Quality 5 mg/m3
1

mg/m3

ppb

1/cm3
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The original variables, however, had to be changed for the
purpose of this thesis. To train the machine learning model,
we needed to have all the values of Parameter_Meteo and
Parameter_Air_Quality in separate columns. This, together
with SHAP, was needed to be able to see what features and
how much they influence our predictions. Also, we omitted the
Interval variable since it had only one unique value, which
would have not helped our predictions. Columns Unit_Meteo

and Unit_Air_Quality were dropped too for a similar reason –
there was only one unique value for each new variable created out
of the Parameter_Meteo and Parameter_Air_Quality columns.

Lastly, since new variables were created out of
Parameter_Air_Quality and Parameter_Meteo columns,
new missing values were created too. This occurred because not
all of these values were measured every day. Due to the fact
that deleting such observations would have extensively reduced
the data size, we decided to replace our missing values with the
corresponding mean values.

4.1.2 Data Visualization

To get a better understanding of the data, we examine a few
visualizations. We are especially interested in inspecting the
temperature variable since it will be later defined as a depen-
dent variable for our machine learning models.

Figure 2 depicts the correlation coefficients for our meteo and
air quality variables. By looking at the temperature row/column,
we may see a rather strong correlation with some other variables.
The highest coefficient can be seen where the relationship with
T_max_h1 is examined, however, this is basically the same vari-
able and should not be taken into account when making predic-
tions later. The second strongest correlation is visible with the
ozone variables, especially with O3_max_h1 and O3. Furthermore,
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there is some nonnegligible relationship between temperature

and global_radiation. If these variables, however, could ac-
tually help with our predictions will be seen in the Chapter 7.

Figure 2: Correlation matrix of meteo and air quality variables

To observe how the levels of temperature, O3, and global_

radiation, are developing over time, we look at these three
graphs below. Because of the high correlation between
temperature and T_max_h1 as well as O3 and O3_max_h1, we de-
cide not to examine the development of T_max_h1 and O3_max_h1

over time.
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In the first line plot, the temperature levels measured in °C can
be seen over years 1992 to 2022. Even though the measurements
over the years seem to be rather constant in general, we could
make some more assumptions. For instance, the levels in recent
years appear to be more extreme than the ones from thirty years
ago.

Figure 3: Temperature levels [ºC ] over years 1992-2022

Figure 4 shows the levels of ozone measured in mg/m3 over the
same time period. Similar to the chart before, the differences be-
tween the minimum and maximum values seem more substantial
in recent years.
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Figure 4: O3 levels [µg/m3] over years 1992-2022

The third graph of this type, Figure 5, shows the development
of global radiation values measured in W/m2. Here, the change
over years is most visible, and it is almost the opposite of the
other two charts. The straight line between the years 2008 and
2010 indicates that there were no measurements taken during that
time period.

Figure 5: Global radiation levels [W/m2] over years 1992-2022
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The last two graphs portray the relationships O3 and global_

radiation have with temperature. These regression plots show
that with higher temperatures, both ozone and global radiation
levels rise.

Figure 6: Regression plots: temperature vs. O3 and temperature vs. global
radiation

4.2 Machine Learning for Weather Predictions

Below, the reasons for our model choice are briefly explained
for each algorithm separately by summarizing relevant literature.

4.2.1 Machine Learning Models

Linear Regression The first and simplest algorithm performed
on our data is Linear Regression. In spite of being one the most
basic machine learning models, Linear Regression is oftentimes
used for making predictions. For example, Holmstrom et al. [15]
use Linear Regression to forecast weather in Stanford, CA. The
dataset they use in this research comes from Weather Under-
ground17 and was collected for years 2011-2015. They use nine

17
https://www.wunderground.com/
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different variables for their machine learning models, which of
some are maximum temperature and precipitation. Although
professional weather forecasting outperforms Linear Regression in
their case, the advantages of this machine learning model are in-
dubitable. That is to say, Linear Regression could potentially
outperform professional models over longer time periods [15].

In [16], the authors use a stepwise Linear Regression model to
predict daily maximum stream temperatures. They use data for
the Truckee River in California and Nevada and some of the vari-
ables available in their dataset are hourly stream temperature

and average daily flow. The results of the stepwise proce-
dure show that daily maximum air temperature and average

daily flow features are able to predict maximum daily stream
temperature at Reno, Nevada. In the next chapter, we will see
whether Linear Regression is able to make satisfactory predictions
for our research too.

Decision Tree The inspiration for selecting a Decision Tree as our
next model stems from various sources. One of them is a paper
written specifically on Decision Trees in weather predictions [17].
Here, they aim to forecast temperature in Hong Kong using pa-
rameters such as relative humidity or average temperature.
In our thesis, however, we make use of various machine learning
models and work with different software for our calculations (in
their case Weka(Waikato Environment for Knowledge Analysis)18

is used).
Another example of weather prediction using the Decision Tree

model is outlined in [18]. In this article, Pekel tries to estimate soil
moisture with the help of various parameters, such as time and
soil temperature. In contrast to our research, Pekel concludes
that the performance of the Decision Tree algorithm is satisfactory
with R Squared value of 0.842 [18].

18
https://www.weka.io/
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Random Forest Making use of a Random Forest model after im-
plementing a Decision Tree algorithm is a natural choice. The
Random Forest model is based on a set of Decision Trees while
often performing better than the simpler algorithm. “Instead
of looking for the best choice, a random subset of features (for
each tree) is used, trying to find the threshold that best sep-
arates the data”, explains Bonaccorso in [10]. This technique
is implemented inter alia by Hill et al. [19] to forecast severe
weather. They use various dynamical model fields (for exam-
ple, mean sea level pressure and relative humidity two

meters above ground) and make use of nine years of such data.
Their predictions are rather accurate which confirms our initial
thought that this is the right model to use with our type of data.

Random Forest algorithm is also used in [11] as one of the
four machine learning algorithms used for rain prediction. In this
research, they work with the ’Rain in Australia’ dataset from Kag-
gle19. In their case, Random Forest performs similarly to Logistic
Regression whilst outperforming Decision Tree and falling behind
the performance of an XGBoost model.20 Our results, as explained
later, are slightly different, however, similar to this research, Ran-
dom Forest is neither the best nor the worst-performing model in
our thesis too.

LightGBM The last model used in our thesis is the LightGBM
algorithm. This model is a type of gradient boosting Decision
Tree which is “a widely-used machine learning algorithm, due to
its efficiency, accuracy, and interpretability” [20]. According to
[21], this algorithm outperforms other gradient boosting methods
in terms of accuracy and computational speed. This is also the
case for weather predictions which is explained by Liu in [22].
According to Liu, the LightGBM model is able to quickly and

19
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package

20
https://xgboost.readthedocs.io/en/stable/
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automatically recognize three main types of severe weather whilst
outperforming the other models when looking at accuracy and
false alarm. For these reasons, we came to the conclusion that the
LightGBM could perform pretty accurately which is affirmed in
the Evaluation section.

4.2.2 Machine Learning Implementation

Almost all of our machine learning models are implemented
using Python’s scikit-learn library.21 This is a “simple and
efficient tool for predictive data analysis” [23] which is open source
too. The only machine learning algorithm for which we have to use
a different package, the lightgbm package [24], is the LightGBM
framework.

Before running the models themselves, we had to do some more
data pre-processing for the purpose of machine learning. First, we
had to change the type of Date column to integer so that it can
be used in the models. Then, we created dummy variables out
of Location and Status columns to be able to use them as fea-
tures in machine learning. Therefore, instead of the Location

variable, we ended up with columns ML_Zch_Schimmelstrasse

and ML_Zch_Stampfenbachstrasse, and instead of Status vari-
able, the ML_revised column was created. The last step before
the dataset was ready was dropping the T_max_h1 column which
would certainly bias our predictions. The final list of variables,
their mean, minimum, and maximum values can be found in Ap-
pendix.

Next, as already mentioned before, we defined temperature

as our dependent variable. The last step that had to be taken
before running the models was dividing the dataset into training
(80 percent of the dataset) and testing (20 percent of the dataset)
samples.

21
https://scikit-learn.org/stable/modules/classes.htmachinelearning
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For all our models, we first fitted the respective model to the
training data (Figure 7). Then, we used the predict function to
make the predictions which is depicted in Figure 8.

Figure 7: Fitting the linear regression model to the training dataset

Figure 8: Making predictions for the linear regression model
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5 Evaluation

To evaluate and compare the different machine learning models
used, we implemented suitable performance metrics for regres-
sion algorithms. Below, we mention five popular performance
metrics (R Squared, Adjusted R Squared, Mean Square Error
(MSE), Root Mean Square Error (RMSE), and Mean Absolute
Error (MAE)22) together with the reasons for their choice and
their performance on our models (Table 3).

5.1 Performance Metrics

R Squared and Adjusted R Squared The first evaluation metrics
used are R Squared and Adjusted R Squared. These metrics are,
according to Chicco et al. [25], highly informative because they
are bounded and cannot go to infinity. In this sense, R Squared
alone would be more explanatory than the other metrics used in
this research, however, more metrics give insights into the per-
formance from various angles. R Squared was used, for instance,
by Stern in [26] to evaluate the accuracy of the weather fore-
cast in Melbourne, Australia. We decided to include Adjusted R
Squared too since this metric, in contrast to R Squared, penal-
izes for adding independent variables which do not improve the
model.23

Mean Square Error and Root Mean Square Error Other popular
metrics that are, as reported by Botchkarev [27], one of the most
frequently used performance metrics in research studies are MSE
and RMSE. Both of these metrics are “sensitive to large errors,
to large variance of errors, and to errors due to outliers” [28].

22
https://medium.com/analytics-vidhya/performance-metrics-regression-mod

el-69f68a18504f

23investopedia, https://www.investopedia.com/ask/answers/012615/whats-diff
erence-between-rsquared-and-adjusted-rsquared.asp
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For example, in a paper written by Pandey et al. in [29], they
use Adaptive Neural Fuzzy Inference Systems24 and fuzzy logic25

methods on weather data while using MSE to compute the predic-
tive power of these algorithms. RMSE is also used used when fore-
casting weather to assess the predictive ability of machine learning
models (Linear Regression, Multiple Linear Regression,26 Support
Vector Regression,27 and Auto Regressive Integrated Moving Av-
erage28) in [30].

Mean Absolute Error The last metric used to evaluate the model
performance is the MAE measure. Similar to MSE and RMSE,
this metric is also “sensitive to outlier errors” [28]. In [31], the
author uses, in addition to RMSE and other metrics, the MAE
measure to calculate the performance of various regression mod-
els, such as Linear Regression and Regression Tree. In this case,
Jahnavi [31] is also interested in the analysis of weather data by
looking at different primary atmospheric parameters of which tem-
perature is the main feature in our research too.

In Table 3, all five metrics are compared for each machine
learning model. The models are ordered according to their perfor-
mance, and the best-performing model is highlighted in orange.

24
https://www.youtube.com/watch?v=HPaqPHT08vY&ab_channel=AmitMishra

25
https://www.techtarget.com/searchenterpriseai/definition/fuzzy-logic

26
https://corporatefinanceinstitute.com/resources/knowledge/other/multip

le-linear-regression/

27
https://towardsdatascience.com/an-introduction-to-support-vector-regre

ssion-svr-a3ebc1672c2

28
https://www.investopedia.com/terms/a/autoregressive-integrated-moving-

average-arima.asp
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Table 3: Machine learning models performance comparison

R2a R2
adj

b MSE RMSE MAE
Linear Regression 0.404 0.403 34.321 5.858 4.727
Decision Tree 0.558 0.557 25.447 5.044 3.686
Random Forest 0.737 0.736 15.157 3.893 2.988
LightGBM 0.828 0.828 9.875 3.142 2.463

a R Squared
b Adjusted R Squared

Looking at Table 3, we may notice that even if reviewing each
performance metric separately, we would conclude for all of them
that the best-performing model is LightGBM. It explains more
than twice the variance explained by Linear Regression when look-
ing both at R Squared and Adjusted R Squared. Also, the value of
MSE for LightGBM is almost a fourth of the value of MSE for Lin-
ear Regression. All in all, the performance differences between the
models are clearly visible when looking at all the evaluation mea-
sures used. The biggest improvement in the model performance
can be seen for the Random Forest algorithm (almost 18 percent
difference in explained variance compared to Decision Tree). On
the contrary, the smallest but still considerable improvement may
be observed for LightGBM (roughly 9 percent difference in ex-
plained variance compared to Random Forest).
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6 SHAP

In this chapter, we first give a short introduction to xAI in
machine learning in general. Next, we look at a few weather
prediction models where SHAP was used by other researchers to
explain and comprehend the respective results. Afterward, we de-
scribe how SHAP is used in our thesis, and compare the SHAP
visualizations of our four machine learning models. Here, we also
briefly summarize why using SHAP was beneficial for the purpose
of this thesis. Last, we discuss a simple feature selection that we
performed thanks to the SHAP plots.

6.1 Explainability in Machine Learning

The opaqueness of machine learning models for humans is just
one of the reasons why xAI is crucial to understand the results of
the respective algorithms [32]. In cases like ours, when the mod-
els are too complex, relevant techniques need to be employed to
understand the algorithms and their results [33]. In this thesis,
Shapley values are used to explain our machine learning models,
however, other techniques, such as layer-wise relevance propaga-
tion,29 are frequently applied too [33].

The relevance and different approaches to explainability in ma-
chine learning are further outlined in [32]. There, Burkart and Hu-
ber highlight the importance of understanding the decision mak-
ing in delicate matters like health. Even though the accuracy
of temperature predictions is not life-threatening, as discussed at
the beginning of this thesis, our topic is directly associated with
climate change which is indeed a pressing issue. Therefore, ex-
plainability is an important aspect of our work since underlining
environmental problems is one of our main motivations.

29
https://towardsdatascience.com/indepth-layer-wise-relevance-propagatio

n-340f95deb1ea
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As Gilpin et al. add in [34], xAI does not serve merely to
explain the model results but is also “important to ensure algo-
rithmic fairness, identify potential bias/problems in the training
data, and to ensure that the algorithms perform as expected”. Al-
together it is recommended in both [34] and [35] to use diverse
metrics that conform to the intent and thoroughness of the re-
spective explanation.

6.2 Weather Prediction Model

Because of SHAP’s popularity, it is used by researchers to fore-
cast weather too. For instance, Straaten et al. [36] applies SHAP
to “discover subseasonal drivers of high summer temperatures in
western and central Europe”. Another research performed by Beu-
cler et al. [37] makes use of the SHAP approach to understand
climate invariance.

Other researchers make use of SHAP to explain the relation-
ships between weather and various other fields, such as healthcare
[38], food industry [39], or aviation [40]. In [38], the authors use
SHAP to explain the performance of a “random forest-based model
for estimating the occurrence of heat-related mortality in a de-
tailed spatial unit within a city” [38]. The SHAP approach helped
them to identify the most important sectors when estimating heat-
related mortality. Next, Zhu et al. [39] perform a SHAP analysis
to find out what extreme weather predictors and how they con-
tribute to yield shock events. Last, SHAP is also used together
with the XGBoost models to give trustworthy explanations that
can help to make aviation operations more economical and safer
[40].
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6.3 The Application of SHAP

The next step of our research is the implementation of SHAP.
To interpret our machine learning models using this game the-
oretical approach, we decided to compare the respective sum-
mary plots. First, however, we had to calculate Shapley values
using shap.Explainer.30 For each algorithm, we specified the
shap.Explainer so that it fits the model. Thus, for Linear Re-
gression, we used the shap.LinearExplainer (Figure 9), and
for the other three models (Decision Tree, Random Forest, and
LighGBM), we switched to the shap.TreeExplainer. In addi-
tion, when calculating Shapley values for our Linear Regression
model, we had to specify a so-called masker 31 (Figure 10). Here,
masker provides background data for our shap.LinearExplainer
to work properly. After calculating respective Shapley values, we
created summary plots for each of our four models (Figure 11).

Figure 9: Specifying masker when calculating Shapley values for the linear
regression model

Figure 10: Calculating Shapley values for the linear regression model

30
https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html?h

ighlight=explainer

31
https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html?h

ighlight=explainer
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Figure 11: Creating a SHAP summary plot for the linear regression model

To compare our models, we may look at Figure 12 display-
ing the four summary plots in which we can see what features and
how strongly they effect our predictions. For instance, O3_max_h1
seems to have the strongest impact on our predictions when look-
ing at the results of our tree models. This is, however, not true for
the Linear Regression model, where global_radiation has the
strongest effect. Another apparent difference among the graphs is
that for the first graph, a lot of the features seem to have almost
no effect on our predictions. But when looking at charts (b), (c),
and (d) here, the effect of the variables at the bottom of the list
is more visible.
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(a) Linear Regression (b) Decision Tree

(c) Random Forest (d) LightGBM

Figure 12: SHAP summary plots comparison
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All in all, we may conclude that exploring SHAP visualiza-
tions is definitely useful. Without them, we would not be able
to see what features and how much they impact our predictions
for each model. When looking at the SHAP visualization of our
best-performing model, we can conclude that the most important
features when predicting temperature are O3_max_h1, Date, and
SO2. Nonetheless, there exist various limitations of SHAP that
one needs to be aware of when working with it, and these are
briefly mentioned in Chapter 7.

6.4 Feature Selection

To get the best performance possible with our models, we de-
cided to perform feature selection on our best-performing model,
LightGBM. Even though the difference between LightGBM and
LightGBM with feature selection is not drastic (Table 3), there is
an improvement. By omitting the least useful variables for pre-
dictions, namely NOx, ML_revised, ML_Zch_Schimmelstrasse,
ML_Zch_Stampfenbachstrasse, PN, O3_nb_h1>120, NO_2, and
precipitation_duration, we manage to slightly improve our
results. Without SHAP, this would be, however, not possible.
Therefore, we may conclude that SHAP not only improves the
model understanding but also plays an important role in refining
the model itself.

Table 4: Comparison of the performance of LightGBM and LightGBM with
feature selection

R2 R2
adj MSE RMSE MAE

LightGBM 0.828 0.828 9.875 3.142 2.463
LightGBM with
Feature Selection

0.833 0.833 9.585 3.096 2.437
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7 Limitations

Despite training several models, analyzing various performance
metrics, and implementing feature selection, there are still some
limitations of our machine learning algorithms as well as SHAP.
Below, three such weaknesses are introduced.

7.1 Data Bias

Data bias occurs when “the available data is not representative
of the population or phenomenon of study”.32 For our research,
only one data source, data.europa.eu, is used. Being an official
open data portal of the European Union makes it a reliable source
of information, however, it can still be a potential subject to bias
in our data. Gathering data from multiple sources could reduce
the chance of such an error. Nevertheless, data bias occurring
in our research could have negative effects in terms of weather
prediction. As already stated, the change in weather is one of the
indicators of climate change [3]. Hence, since impacting human
lives, the issue of incorrect weather predictions is far more severe
than it can seem at first sight.

7.2 Missing Values

After completing the data pre-processing, quite some missing
values were created. Losing all these observations just because of
a few missing values in one row would considerably decrease the
size of the dataset. This would result in a smaller training and
testing dataset, and the predictions would most probably not be
as accurate which would become a limitation itself. Hence, we de-
cided to replace all the missing values with respective mean values.
However, since such values are not the real ones, this may result in
imprecise predictions, thus erroneous results of our models. Still,

32
https://towardsdatascience.com/survey-d4f168791e57
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we believe replacing missing values instead of deleting them was
a better solution because of the reasons explained above.

7.3 SHAP

Even though SHAP is a powerful tool, it has its limitations. For
instance, SHAP relies solely on mathematics, however, oftentimes
the common sense of a human mind can result in better assess-
ments [41]. In addition, SHAP explains the correlations only, and
it is also limited to the features of a model which can sometimes
not reflect reality correctly.33 Another limitation that comes with
using SHAP is the issue of multicollinearity. It can happen that if
there are variables with high multicollinearity, one of them could
be predicted as more important than in reality whilst the contrary
would happen for the other variable.34 Regardless of SHAP’s lim-
itations, we gain more insight into our data than if we would have
not used it.

33
https://towardsdatascience.com/using-shap-for-explainability-understan

d-these-limitations-first-1bed91c9d21

34
https://towardsdatascience.com/using-shap-for-explainability-understan

d-these-limitations-first-1bed91c9d21
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8 Conclusion and Future Work

8.1 Conclusion

To conclude our work, first, we would like to summarize our
key findings. By making use of respective literature, we were
able to explain the results of four machine learning models. We
carefully chose the method for explaining our models as well as
the models themselves. Additionally, we pre-processed two raw
datasets so that they could be used for machine learning. All
in all, we performed end-to-end research that not only leads to
accurate results but also builds a foundation for future analysis.

8.1.1 Research Questions

Here, we will revisit and answer our four research questions in
the following order – main research questions, subquestion regard-
ing the state of art, subquestion about data and machine learning,
and subquestion regarding SHAP.

How effective is SHAP for providing explanations for

existing weather prediction models?

The effectiveness of SHAP for providing explanations for
weather prediction models is not only documented in previous
research, but is also demonstrated in our own work. The added
value of SHAP in our research lies in enhancing the understanding
of our results, as well as being able to further improve our models.

How effective are existing machine learning approaches in fore-
casting weather?

As mentioned before, using machine learning models to forecast
weather is rather common. When opting for the right models,
these predictions can be accurate and informative.
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What datasets and how do they need to be adjusted in order to
use them for machine learning?

The whole process of choosing the right datasets as well as pre-
processing them is explained in our thesis. We had to make sure
that our data comes from a reliable source and is suitable for our
research. Still, we had to make quite a few changes to our data
so that we would be able to use it for machine learning. These,
among other things, included handling missing values, pivoting
our dataset, or dropping irrelevant variables. These modifications
can often be very tedious and require a lot of time, however, they
are an integral part of our work. That is, without correct data
there would be no correct results.

How effective is SHAP when compared to other approaches to
xAI?

As previously noted, SHAP is a very popular game theoretic
approach for xAI. It is, therefore, no surprise that SHAP is, as
explained before, one of the most complete xAI methods. Its
universal usability is the main reason why we chose this approach
in particular.

8.2 Future Work

For future work, various points could be mentioned. We de-
cided to briefly discuss the possibility of using more data for the
predictions, upgrading our machine learning algorithms, as well as
adding more techniques to explain and understand our machine
learning models.
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8.2.1 More Data

Using more data for our models could potentially improve our
predictions. Not only adding more historical data but also includ-
ing more measurements for the time period observed would give
us more information. This could then be used by the algorithms
to train themselves and perform more accurately. Additionally,
new data could be added by including more variables that would
help with our predictions. None of these was, however, an option
for our datasets since we made complete use of them.

Nonetheless, we managed to find similar datasets35,36 that
could help with our results. These were, however, measured on an
hourly basis so we would not be able to combine them with our
datasets. Still, we could apply the same machine learning models
and SHAP approach to this data to see whether any new infor-
mation would have been gained since not all the variables are the
same as in our datasets.

8.2.2 Improvement of Existing Models

Even though we have already done some feature selection of our
best-performing model, there is more that could be done to refine
a machine learning model. For example, one could make use of the
sklearn.feature_selection library to apply wrapper methods.
As defined by Karagiannopoulos et al. [42], “wrapper methods
wrap the feature selection around the induction algorithm to be
used, using cross validation to predict the benefits of adding or
removing a feature from the feature subset used”. These methods,
even though quite computationally heavy, often perform better
than so-called filter methods [42]. Ideally, both methods would
be used and compared to achieve the best possible results for our

35
https://data.stadt-zuerich.ch/dataset/ugz_luftschadstoffmessung_stund

enwerte

36
https://data.stadt-zuerich.ch/dataset/ugz_meteodaten_stundenmittelwert

e
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predictions. There even exists a method that combines these two
approaches – it uses “a low-cost filter method to rank features and
a costly wrapper method to further eliminate irrelevant variables”
[28].

Possibly, new models could be added to our machine learn-
ing portfolio. We, however, chose to use the four models for the
reasons explained in Chapter 4.

8.2.3 More Approaches to xAI

The knowledge gained by using the SHAP approach confirms
that our choice to use this method was the right decision. Never-
theless, including more approaches, such as LIME, could lead to
new findings and improve the overall understanding of our mod-
els. Thus, for potential future work, we recommend comparing
the results of a few different techniques for xAI.
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A Appendix I

The following Table shows the overview of the variables present
in the pre-processed dataset used for machine learning. For each
feature, its name, mean, minimum, and maximum values are
shown.
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